scintillation. Specific binding of [$\left.{ }^{3} \mathrm{H}\right]$ DHA (binding in the absence of any added compounds minus that in the presence of $20 \mu \mathrm{M}$ l-alprenolol) was approximately $65 \mathrm{fmol} / \mathrm{mg}$ protein. In a typical experiment the total specific binding was $7-8 \%$ of the free $\left[{ }^{3} \mathrm{H}\right] \mathrm{DHA}$ and the nonspecific binding was 50% of the total specific binding. The affinity of a compound was estimated by competition binding with $\left[{ }^{3} \mathrm{H}\right]$ DHA with $5-10$ different concentrations of each compound and the IC_{50} (concentration at which specific [$\left.{ }^{3} \mathrm{H}\right]$ DHA binding is inhibited by 50%) was determined visually from a semilog plot. The apparent K_{i} was calculated according to the formulation of Cheng and Prusoff: ${ }^{26} K_{\mathrm{i}}=\mathrm{IC}_{50} /(1+L / \mathrm{KD})$, where K_{i} is the inhibition constant of the test compound, L is the concentration of $\left[{ }^{3} \mathrm{H}\right] \mathrm{DHA}$, and the KD is the dissociation constant for $\left[{ }^{3} \mathrm{H}\right] \mathrm{DHA}$ (approximately 1 nM).

Acknowledgment. We are greatly indebted to Drs. S. J. Riggi and F. L. Scott for their support in this work and
(26) Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

Drs. W. L. Albrecht, B. E. Watkins, and J. C. Strand for their suggestions during the preparation of this manuscript. Thanks are due to Dr. M. Fedorchuk for his work in chemical synthesis.
Registry No. $1,84858-29-7 ; 1 \cdot \mathrm{HCl}, 84858-18-4 ; 3,84858-17-3 ;$ 4, 106820-96-6; 5, 106820-97-7; 7 (R = Pr), 87272-33-1; 8, 87272-$33-1 ; 9,84858-38-8 ; 10,84858-53-7 ; 10 \cdot \mathrm{HCl}, 84858-54-8 ; 11$, 84858-51-5; 12, 84858-55-9; 13, 84858-56-0; 13-maleate, 84858-57-1; $14,106820-99-9 ; 14 \cdot \mathrm{HCl}, 106821-05-0$; 15, 106821-00-5; 16, 106821-01-6; 17, 106821-02-7; 17.HCl, 106821-06-1; 18, 106821-03-8; $\mathrm{PhCH}_{2} \mathrm{CN}, 140-29-4 ; \mathrm{PhCO}_{2} \mathrm{COPh}, 93-97-0 ; i-\mathrm{PrNH}_{2}, 75-31-0$; $\operatorname{PrAlH}_{2}, 107-10-8 ; \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}, \quad 107-11-9 ; s-\mathrm{BuNH}_{2}$, 13952-84-6; MeNHPr, 627-35-0; t - $\mathrm{BuNH}_{2}, 75-64-9$; BuNH_{2}, 109-73-9; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}, 110-58-7 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2}, 111-26-2 ; 7$ -hydroxy-3-phenylflavone, 18651-11-1; resorcinol, 108-46-3; ω phenylresacetophenone imine hydrochloride, 106821-04-9; ω phenylresacetophenone, 3669-41-8; epichlorohydrin, 106-89-8; cyclopropanamine, 765-30-0; cyclopentanamine, 1003-03-8; cyclohexanamine, 108-91-8.

Structure-Activity Relationship in PAF-acether. 3. ${ }^{1}$ Hydrophobic Contribution to Agonistic Activity

Jean-Jacques Godfroid, ${ }^{* \dagger}$ Colette Broquet, ${ }^{\dagger}$ Simone Jouquey, ${ }^{\ddagger}$ Mariya Lebbar, ${ }^{\dagger}$ Françoise Heymans, ${ }^{\dagger}$ Catherine Redeuilh, ${ }^{\dagger}$ Efroím Steiner, ${ }^{\dagger}$ Elie Michel, ${ }^{\dagger}$ Eliane Coeffier, ${ }^{8}$ Jeanne Fichelle, ${ }^{\ddagger}$ and Manuel Worcel ${ }^{\ddagger}$
Laboratoire de Pharmacochimie Molêculaire, Université de Paris 7, 75251 Paris Cédex 05, France, Centre de Recherches Roussel-Uclaf, 93230 Romainville, France, and Unité de Recherches sur les Venins, Institut Pasteur, 75015 Paris, France. Received October 23, 1986

The synthesis of some selected PAF-acether homologues with an alkoxy-chain length from C_{1} to C_{20} in position 1 is described. All agonist activities are closely correlated among themselves and with the calculated fatty-chain hydrophobicity. After a discussion on recent published results and comparison with our data, we conclude that the ether oxide function is absolutely essential at the glycerol 1-position for potent agonist activity and that potency correlates well with hydrophobicity parameters. We indicate the importance of steric and configurational constraints.

Since its structure was elucidated in 1979 via hemisynthesis from plasmalogens, ${ }^{2,3}$ platelet activating factor (PAF-acether) Ib + Ic (natural configuration R) (Figure 1) has been increasingly studied for its remarkable biological activities, mainly platelet aggregation, ${ }^{4}$ bronchoconstriction, ${ }^{5}$ and hypotension. ${ }^{6}$ Its biosynthesis was found to occur in a variety of inflammatory cells: ${ }^{7}$ basophils, ${ }^{8}$ macrophages, ${ }^{9}$ neutrophils, ${ }^{10,11}$ and platelets themselves. ${ }^{4}$ Research interest is now focused on the study of the relationship between specific chemical moieties of this molecule and its biological activities. ${ }^{12-16}$

Here, we report the synthesis of some selected linear-ether-chain homologues of PAF-acether, from C_{1} to C_{20}, by a minor modification of the methods we have already described. ${ }^{17-19}$ We also studied correlations between lipophilicity of the ether chain and agonistic activities such as platelet aggregation (on washed platelets (WP) and platelet-rich plasma (PRP)), hypotension, bronchoconstriction, and thrombocytepenia.

Chemistry

The PAF-acether homologues described in this paper are listed in Figure 1. Alkylacetylglycerophosphocholines I were prepared by using modified versions of our already published procedures ${ }^{17-19}$ (Scheme I).

Glyceryl ethers 1 were obtained from the potassium salt of 1,2-O-isopropylideneglycerol and the corresponding alkyl

[^0]methanesulfonate ($\left.\mathrm{R}=\mathrm{C}_{6}-\mathrm{C}_{20}\right)^{20}$ or by condensing 1,2-Oisopropylideneglycerol with alkyl iodides ($\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$ and
(1) For previous papers in this series, see ref 13 and ref 15. Part of this work was previously presented: PAF-Acether Antagonists, Paris, June 1985; 26th International Conference on the Biochemistry of Lipids, Graz, September 1985, Leucotrienes and PAF-Acether '85 Paris, September 1985.
(2) Demopoulos, C. A.; Pinckard, R. N.; Hanahan, D. J. J. Biol. Chem. 1979, 254.
(3) Benveniste, J.; Tencê, M.; Varenne, P.; Bidault, J.; Boullet, C.; Polonsky, J. C. R. Seances Acad. Sci. Ser. D 1979, 289, 1037.
(4) Chignard, M.; Le Couedic, J. P.; Vargaftig, B. B.; Benveniste, J. Nature (London) 1979, 279, 799.
(5) Vargaftig, B. B.; Lefort, J.; Chignard, M.; Benveniste, J. Eur. J. Pharmacol. 1980, 65, 185.
(6) Blank, M. L.; Snyder, F.; Byers, L. W.; Brooks, B.; Muirhead, E. E. Biochem. Biophys. Res. Commun. 1979, 90, 1190.
(7) Snyder, F. In Medicinal Research Reviews; New York, 1985; Vol. 5, p 107.
(8) Bussolino, F.; Benveniste, J. Immunology 1980, 40, 367.
(9) Ninio, E.; Mencia-Huerta, J. M.; Heymans, F.; Benveniste, J. Biochim. Biophys. Acta 1982, 710, 23.
(10) Lee, T. C.; Malone, B.; Wasserman, S. I.; Fitzgerald, V.; Snyder, F. Biochem. Biophys. Res. Commun. 1982, 105, 1303.
(11) Alonso, F.; Gil, M. G.; Sanchez-Crespo, M.; Mato, J. M. J. Biol. Chem. 1982, 129, 809.
(12) Tencē, M.; Coeffier, E.; Heymans, F.; Polonsky, J.; Godfroid, J. J.; Benveniste, J. Biochimie 1981, 63, 723.
(13) Broquet, C.; Teulade, M. P.; Borghero, C.; Heymans, F.; Godfroid, J. J.; Lefort, J.; Coeffier, E.; Pirotzky, E. Eur. J. Med. Chem.-Chim. Ther. 1984, 19, 229.
(14) Wissner, A.; Sum, P. E.; Schaub, R. E.; Kohler, C. A.; Goldstein, B. M. J. Med. Chem. 1984, 27, 1174.
(15) Heymans, F.; Borrel, M. C.; Broquet, C.; Lefort, J.; Godfroid, J. J. J. Med. Chem. 1985, 28, 1094.

Table I. Physicochemical Properties of 1-O-Alkyl-2-O-acetyl-rac-glycero-3-phosphocholine Synthetic Intermediates 1-10

compd	$R_{f}{ }^{c}$							
	a, $\mathrm{C}_{20} \mathrm{H}_{41}{ }^{\text {a }}$	b, $\mathrm{C}_{18} \mathrm{H}_{37}{ }^{\text {a,b }}$	c, $\mathrm{C}_{16} \mathrm{H}_{33}{ }^{\text {b }}$	d, $\mathrm{C}_{12} \mathrm{H}_{25}{ }^{\text {b }}$	e, $\mathrm{C}_{10} \mathrm{H}_{21}{ }^{\text {a }}$	f, $\mathrm{C}_{6} \mathrm{H}_{13}{ }^{\text {b }}$	g, $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\text {b }}$	h, $\mathrm{CH}_{3}{ }^{\text {b }}$
$1^{\text {d }}$	0.53 (A)	0.51 (A)	0.48 (A)	0.47 (A)	0.47 (A)	0.40 (A)	0.37 (A)	0.29 (A)
2^{e}	0.31 (B)	0.30 (B)	0.29 (B)	0.28 (B)	0.27 (B)	0.25 (B)	0.22 (B)	0.10 (B)
$3^{\text {e }}$		0.47 (D)	0.48 (D)	0.52 (D)		0.49 (C)	0.52 (C)	0.65 (C)
$4{ }^{\text {e }}$		0.12 (A)	0.12 (A)	0.12 (A)		0.10 (A)	0.07 (A)	0.04 (A)
$5{ }^{\text {e }}$		0.39 (F)	0.39 (F)	0.38 (F)	,	0.35 (F)	0.30 (F)	0.29 (F)
6^{e}		0.27 (G)	0.27 (G)	0.26 (G)		0.24 (G)	0.24 (G)	0.24 (G)
$7{ }^{\text {f }}$		0.10 (G)	0.10 (G)	0.10 (G)		0.10 (G)	0.09 (G)	0.09 (G)
$8{ }^{8}$	0.28 (D)	0.29 (D)			0.32 (D)			
10^{h}	0.35 (F)	0.35 (F)			0.37 (F)			

${ }^{a}$ Method B. ${ }^{b}$ Method A. ${ }^{c}$ Solvent system in parentheses: $\mathrm{A}=\mathrm{CHCl}_{3} / \mathrm{MeOH}, 95: 5, \mathrm{v} / \mathrm{v}$ (iodine); $\mathrm{B}=$ petroleum ether (P)/ether (E), $70: 30, \mathrm{v} / \mathrm{v}$ (iodine or UV); $\mathrm{C}=\mathrm{P} / \mathrm{E}, 80: 20, \mathrm{v} / \mathrm{v}$ (iodine or UV); $\mathrm{D}=\mathrm{P} / \mathrm{E}, 90: 10, \mathrm{v} / \mathrm{v}$ (iodine or UV); $\mathrm{F}=\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 80: 20: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}$ (molybdenum spray or iodine); $\mathrm{G}=\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 70: 35: 7, \mathrm{v} / \mathrm{v} / \mathrm{v}$ (molybdenum spray or iodine). ${ }^{d}$ Melting point according to ref 20 for $1 \mathrm{a}-1 \mathrm{~d}$; boiling point according to ref 21 for $1 \mathrm{e}-1 \mathrm{~g}$ and to ref 23 for 1 h . ${ }^{e}$ Only $2 \mathrm{a}-2 \mathrm{c}$ were solid and recrystallized in petroleum ether $\left(30-60^{\circ} \mathrm{C}\right) ; \mathrm{mp}=61^{\circ} \mathrm{C}$ for $\mathbf{2 a}, 55^{\circ} \mathrm{C}$ for $\mathbf{2 b}$, and $36^{\circ} \mathrm{C}$ for $\mathbf{2 c}$; other intermediates from $\mathbf{2}$ to $\mathbf{6}$ were viscous oils. ${ }^{f}$ Only $7 \mathrm{~b}-7 \mathbf{d}$ were solid and had $\mathrm{mp}>200^{\circ} \mathrm{C}$ with decomposition. ${ }^{g}$ Recrystallization solvent = petroleum ether ($30-60^{\circ} \mathrm{C}$); mp=52 ${ }^{\circ} \mathrm{C}$ for $8 \mathbf{a}$ and $49^{\circ} \mathrm{C}$ for $8 \mathbf{b}$; 8 e was a viscous oil. ${ }^{h}$ Viscous oil.

Table II. Spectral Data of 1-O-Alkyl-2-O-acetyl-rac-glycero-3-phosphocholine Synthetic Intermediates

compd	IR (KBr) ${ }^{a} \quad \nu\left(\mathrm{~cm}^{-1}\right)$	${ }^{1} \mathrm{H}$ NMR: ${ }^{\text {a }}$ M Mzz , solvent, δ
1	3380 (OH), 1110 (C-O-C), $1040(\mathrm{COH})$	
2	$\begin{aligned} & 3450(\mathrm{OH}), 3080,3050,3020(\mathrm{Ar} \mathrm{CH}), 1590(\mathrm{Ar} \\ & \mathrm{C}=\mathrm{C}), 1080(\mathrm{C}-\mathrm{O}-\mathrm{C}) \end{aligned}$	$\begin{aligned} & \left.60 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3.20\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCPh}_{3}\right), 3.90 \text { (quintet, } 1 \mathrm{H}, \mathrm{CHOH}\right), 7.26 \\ & (\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar} \mathrm{H}) \end{aligned}$
3	$\begin{aligned} & 3080,3050,3020(\mathrm{ArCH}), 1590(\mathrm{Ar} \mathrm{C}=\mathrm{C}), 1080 \\ & (\mathrm{C}-\mathrm{O}-\mathrm{C}) \end{aligned}$	$80 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3.70$ (quintet, $1 \mathrm{H}, \mathrm{CHObz}^{\text {b }}$), 4.67 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$)
4	$3450(\mathrm{OH}), 1125,1065(\mathrm{C}-\mathrm{O})$	$60 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.65(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}$), 7.36 (large s, $5 \mathrm{H}, \mathrm{Ar} \mathrm{H}$)
5	$\begin{aligned} & 3450(\mathrm{OH}), 1250(\mathrm{P}=\mathrm{O}), 1125,1050,1030 \\ & (\mathrm{C}-\mathrm{O}-\mathrm{C}, \mathrm{P}-\mathrm{O}) \end{aligned}$	
6	$\begin{aligned} & \left.3400,1650 \text { (remaining } \mathrm{H}_{2} \mathrm{O}\right), 1250(\mathrm{P}=0), 1100 \text {, } \\ & 1080,1060(\mathrm{P}-\mathrm{OC}, \mathrm{C}-\mathrm{O}-\mathrm{C}) \end{aligned}$	$\left(\mathrm{m},{ }^{c} 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right), 4.16\left(\mathrm{~m},{ }^{c} 2 \mathrm{H}, \mathrm{POCH}_{2}\right)$
7	$\begin{aligned} & 3400(\mathrm{OH}), 1240(\mathrm{P}=\mathrm{O}), 1100,1050 \text { (large, } \\ & \mathrm{C}-\mathrm{O}, \mathrm{P}-\mathrm{O}) \end{aligned}$	$250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 3.22\left(\mathrm{~s}, 9 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.88\left(\mathrm{~m},{ }^{c} 3 \mathrm{H}, \mathrm{CHOH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OP}\right)$, $4.29\left(\mathrm{~m}^{c}{ }^{c} 2 \mathrm{H}, \mathrm{POCH}_{2}\right)$
8	$\begin{aligned} & 3100,3080,3040(\mathrm{ArCH}), 1740(\mathrm{C}=\mathrm{O}), 1590(\mathrm{Ar} \\ & \mathrm{C}=\mathrm{C}) \end{aligned}$	$60 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2.00$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 5.16 (quintet, $1 \mathrm{H}, \mathrm{CHOAc}{ }^{\text {d }}$)
10	$3450(\mathrm{OH}), 1740(\mathrm{C}=\mathrm{O}), 1240(\mathrm{C}-\mathrm{O}-\mathrm{C}$ ester, $\mathrm{P}=\mathrm{O}$), 1080 (large, $\mathrm{P}-\mathrm{O}, \mathrm{C}-\mathrm{O}-\mathrm{C}$ ether)	

Compd	R
$\underline{\text { Ia }}$	${ }^{n-C_{20}} \mathrm{H}_{41}$
$\underline{\text { Ib }}$	$\mathrm{n}_{-\mathrm{C}}^{18} \mathrm{C}^{\text {H7 }}$
$\underline{\text { Ic }}$	${ }^{\mathrm{n}-\mathrm{C}} 16 \mathrm{C}_{33}$
Id	${ }^{\mathrm{n}-\mathrm{C}_{12} \mathrm{H}_{25}}$
Ie	$\mathrm{n}_{-\mathrm{C}_{10} \mathrm{H}_{21}}$
If	$\mathrm{n}_{-\mathrm{C}}^{6} \mathrm{H}_{13}$
$\underline{\mathrm{Ig}}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$
Ih	CH_{3}

Figure 1. Racemic PAF-acether homologues in position 1.
CH_{3}) in the presence of silver oxide, ${ }^{21}$ followed by acid hydrolysis.

Physicochemical properties of the intermediates are summarized in Table I and their spectral data in Table

[^1]Table III. Physicochemical Properties and Spectral Data ${ }^{h}$ of 1-O-Alkyl-2-O-acetyl-rac-glycero-3-phosphocholines Ia-Ih

${ }^{a} \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 70: 35: 7, \mathrm{v} / \mathrm{v} / \mathrm{v}$ (molybdenum spray or iodine). ${ }^{b}$ Retention time in HPLC. ${ }^{c}$ General spectrum for Ia-Ih. ${ }^{d}$ See ref 24 for details. ${ }^{e}[\mathrm{~A}]=[\mathrm{MH}]^{+}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3} .{ }^{f}[\mathrm{~B}]=[\mathrm{MH}]^{+}-$ $\left[{ }^{-} \mathrm{OP}(\mathrm{O}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}\right]+\mathrm{H}$, abundant fragment ion corresponding to $[\mathrm{B}]-\mathrm{H}_{2} \mathrm{O}$ was also present. ${ }^{\mathrm{g}}[\mathrm{B}]-\mathrm{CH}_{3} \mathrm{OH}$ at m / z 117 was found in addition. ${ }^{h} \mathrm{Ia}-\mathrm{Ig}:{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28$ (large s, $\left.2 n \mathrm{H},\left(\mathrm{CH}_{2}\right)_{n}\right), 1.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \alpha$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.22\left(\mathrm{~s}, 9 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.45(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \beta$) $), 3.58\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \gamma\right), 3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \zeta\right), 4.00\left(\mathrm{~m},{ }^{31} \mathrm{P}\right.$ spin coupling, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \delta\right), 4.30\left(\mathrm{~m},{ }^{31} \mathrm{P}\right.$ spin coupling, $2 \mathrm{H}, \mathrm{CH}_{2}$), 5.15 (quintet, $1 \mathrm{H}, \mathrm{CHOAc}$). Compound Ih gave a signal at $3.25(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$) for the alkyl chain; others are the same as for $\mathrm{Ia}-\mathrm{Ig}$. All products gave satisfactory elemental analyses (C, H, N. P).
II. Chromatographic behavior, ${ }^{1} \mathrm{H}$ NMR spectral data, and the mean fragmentation peaks in mass spectra are listed in Table III for the terminal compounds I. We

Table IV. Biological Data on 1-O-Alkyl-2-O-acetyl-rac-glycero-3-phosphocholines

compd	R	platelet aggregation: ${ }^{\text {a }} \mathrm{EC}_{50}, \mathrm{M}$		hypotension: ${ }^{b}$ $\mathrm{EC}_{30}, \mathrm{~mol} / \mathrm{kg}$	bronchoconstriction ${ }^{c}$ (3 cm H 2 O), $\mathrm{mol} / \mathrm{kg}$	thrombocytopenia: ${ }^{c} \mathrm{EC}_{50}$, $\mathrm{mol} / \mathrm{kg}$
		WP	PRP			
	$\mathrm{C}_{18} \mathrm{H}_{37}(R)^{\text {d }}$	5.7×10^{-11}	$1.9 \times 10^{-8}(1.7-2.2)^{f}$	$4.9 \times 10^{-10}(3.7-6.5)$	1.8×10^{-10}	1.8×10^{-10}
Ia	$\mathrm{C}_{20} \mathrm{H}_{41}$	3.3×10^{-10}	$1.9 \times 10^{-7}(1.4-2.5)$	$2.4 \times 10^{-9}(1.5-6.2)$	1.3×10^{-9}	1.8×10^{-10}
Ib	$\mathrm{C}_{18} \mathrm{H}_{37}$	2.2×10^{-10}	$5.7 \times 10^{-8}(4.0-6.6)$	$1.5 \times 10^{-9}(1.0-1.95)$	5.4×10^{-10}	5.4×10^{-10}
Ic	$\mathrm{C}_{16} \mathrm{H}_{33}$	2.0×10^{-10}	$4.5 \times 10^{-8}(3.9-5.1)$	$1.3 \times 10^{-10}(0.7-1.2)$	0.5×10^{-10}	2.0×10^{-10}
Id	$\mathrm{C}_{12} \mathrm{H}_{25}$	4.5×10^{-10}	$2.3 \times 10^{-7}(2.0-2.6)$	$3.3 \times 10^{-9}(2.3-5.8)$	1.2×10^{-10}	0.6×10^{-9}
Ie	$\mathrm{C}_{10} \mathrm{H}_{21}$	8.5×10^{-9}	$1.2 \times 10^{-6}(0.9-1.6)$	$0.7 \times 10^{-8}(0.6-0.8)$	2.5×10^{-10}	0.6×10^{-9}
If	$\mathrm{C}_{6} \mathrm{H}_{13}$	3.1×10^{-7}	$1.7 \times 10^{-5}(1.4-1.9)$	$0.7 \times 10^{-6}(0.3-4.5)$	2.6×10^{-8}	1.0×10^{-7}
Ig	$\mathrm{C}_{4} \mathrm{H}_{9}$	1.8×10^{-6}	1.0×10^{-4}	$1.1 \times 10^{-6}(0.7-3.4)$	1.0×10^{-6}	$\xrightarrow{1.0} \times 1.0 \times 10^{-6}$
Ih	CH_{3}		$>1.0 \times 10^{-4 e}$	$>1.6 \times 10^{-6 e}$	$>1.6 \times 10^{-8 e}$	$>1.6 \times 10^{-6 e}$

${ }^{a}$ In vitro on rabbit platelets; $\mathrm{WP}=$ washed platelets, $\mathrm{PRP}=$ platelet-rich plasma. ${ }^{b}$ On anesthetized rat. ${ }^{c}$ On anesthetized guinea pig. ${ }^{d}$ Synthetic PAF-acether in its natural configuration (R) used as a reference. ${ }^{e}$ Considered as inactive. f Values in parentheses are 95% confidence intervals.

Table V. Squared Correlation Coefficient Matrix of Lipophilic Character Σf and Biological Data

	Σf^{a}	$\mathrm{pE} \mathrm{W} \mathrm{P}^{\text {b,c }}$	pE PRP ${ }^{\text {b,c }}$	$\mathrm{pE} \mathrm{HYPO}{ }^{\text {b }}$	$\mathrm{pE} \mathrm{BRON}{ }^{\text {b }}$	pE THR ${ }^{\text {b }}$
Σf	1.000					
pE WP	0.850	1.000				
pE PRP	0.824	0.980	1.000			
pE HYPO	0.726	0.908	0.935	1.000		
pE BRON	0.470	0.787	0.812	0.830	1.000	
pE THR	0.762	0.910	0.892	0.884	0.871	1.000

${ }^{a}$ See Experimental Section. ${ }^{b}-\log$ (effective concentration). ${ }^{c}$ Aggregation.
determined that when R decreased from C_{20} to C_{1}, the lability of the acetyl group and also the phosphoryl group increased so much for $\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$ or CH_{3} that we obtained a mixture of the two positional isomers which were separated by HPLC chromatography, at the last step. This fact was observed by Pluncktun and Dennis. ${ }^{22}$ Since the last two compounds were highly water soluble, the yields were poor.

Biology and Discussion

All the homologues were tested (i) in vitro for their ability to aggregate washed rabbit platelets (WP) and platelet-rich plamsa (PRP), (ii) in vivo for bronchoconstriction and thrombocytopenic effects in guinea pigs, and (iii) for hypotensive activity in rats. The results are listed in Table IV as effective concentrations.

The qualitative structure-activity relationships ${ }^{12-16}$ were thoroughly investigated (i) in order to show which moieties of the molecule are important to retain agonist activities and (ii) to separate platelet stimulation and bronchoconstriction from hypotensive activity.

Our aim here was not to prepare a new generation of antihypertensive drugs, but to study the influence of alk-oxy-chain hydrophobicity (lipophilicity) in position 1 from C_{1} to C_{20} as a function of platelet stimulation in vitro (on washed rabbit platelets and on platelet-rich plasma) and in some in vivo activities: bronchoconstriction, hypotension, and thrombocytopenia. The lipophilicity (hydrophobicity) was evaluated according to the hydrophobic fragmental constant (f) system, as described by Rekker and De Kort ${ }^{25}$ (see Experimental Section).

[^2]

Figure 2. Relationship between $\mathrm{pE} P R P=-\log \left(\mathrm{EC}_{50} \mathrm{PRP}\right)$ and $\mathrm{pE} W P=-\log \left(\mathrm{EC}_{50} \mathrm{WP}\right)$ for compounds Ia-Ig. The regression equation is $\mathrm{pE} P R P=-0.156(\pm 0.195)+0.773(\pm 0.098) \mathrm{pEWP}$. $n=7, s=0.199, r=0.989, F(1,5)=238.98$.

The first interesting result is that measurements performed in these series by two independent groups (Institut Pasteur and Roussel-Uclaf) on PRP and WP are closely correlated (Figure 2). Furthermore, all the agonist activities are also closely correlated among themselves and with the calculated ether oxide chain lipophilicity, as shown by the orthogonality matrix (Table V).

The data point corresponding to the Ih analogue was excluded because it was inactive at $10^{-4} \mathrm{M}$ doses before lysis (cf. Table IV). These data indicate that there is no possibility of separating platelet stimulation and bronchoconstriction from hypotension by means of chain-length variation.
In addition, the close correlation among the plateletstimulation measurements observed above made it possible to compare literature results on other PAF-acether ho-
(26) Garrigues, B.; Bertrand, G.; Frehel, D.; Maffrand, J. P. Phosphorus Sulfur 1984, 21, 171.

Table VI. Analogues of PAF-acether Used in Discussion, Calculated Hydrophobicity of the Chain in Position 1, and Relative Aggregant Activity

X	$\mathrm{compd}^{\text {a }}$	$\sum f^{\text {b }}$	$\mathrm{RA}^{\text {c }}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}-$			
$n=19$	Ia	8.97	0.300
$n=17$	Ib	7.73	1.000
$n=15$	Ic	6.89	1.268
$n=11$	Id	4.81	0.248
$n=9$	Ie	3.78	0.048
$n=5$	If	1.70	0.003
$n=3$	Ig	0.66	0.001
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n}$			
(O)-0-			
$n=13$ para	$2 \mathrm{a}^{\text {d }}$	8.69	0.302
$n=13$ meta	$2 \mathrm{~b}^{\text {d }}$	8.69	0.364
$n=15$ ortho	$2 \mathbf{c}^{\text {d }}$	9.73	0.002
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{O}-$			
$n=5$	$3 \mathrm{a}^{e}$	6.44	1.600
$n=7$	$3 \mathrm{~b}^{e}$	7.58	2.000
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{O}-$	$3 \mathrm{c}^{e}$	7.22	2.667
$\mathrm{R}=\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14}-$	$4 \mathrm{a}^{\prime}$	6.72	0.009
$\mathrm{R}=\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16}-$	$4 \mathbf{b}^{f}$	7.75	0.004
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{17} \mathrm{~S}-$	$5 \mathbf{a}^{\text {g }}$	9.01	0.000
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n}$ -			
$n=15$	$6 \mathbf{a}^{h}$	8.49	0.005
$n=16$ $n=18$	$6 \mathbf{b}^{i}$	9.00	0.022
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{OCH}_{2}-$	$7 \mathrm{a}^{k}$	7.41	0.015
$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{O}-$	$8 \mathrm{a}^{\text {l }}$	1.70	0.007
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-$	$8 \mathbf{b}^{\text {d }}$	3.81	0.280
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{g}} \mathrm{OCH}_{2}-\mathrm{O}-\mathrm{O}$	$9 \mathbf{a}^{m}$	5.51 \}	$0.01-0.02^{n}$
	$9 \mathrm{~b}^{m}$	5.51	

[^3] ${ }^{c}$ Relative aggregant activity on rabbit platelets except compounds 9 a and $9 \mathbf{b}$; see footnote n and the text. ${ }^{d}$ From ref 14 . ${ }^{e}$ From ref 16 . f From ref $12 .{ }^{\beta}$ From ref $26 .{ }^{h}$ From ref 14 . ${ }^{i}$ From ref 27 , ${ }^{j}$ From ref 13 . ${ }^{k}$ From ref 28 . ${ }^{i}$ From ref $29 .{ }^{m}$ From ref 30 . ${ }^{n}$ Values estimated by the authors on human platelets.
mologues with ours (Ia to Ig). We expressed relative platelet-stimulating activities (RA) as follows:

$R A=$

$\mathrm{EC}_{50} \mathrm{C}_{18}$ PAF (R or R, S) $/ \mathrm{EC}_{50}$ analogue (R or R, S)
both values taken from the same publication (cf. references in Table VI). Table IV shows that all the agonist activities increase with the lipophilicity. More specifically, the platelet aggregation in vitro in the rabbit is maximum for a $\mathrm{C}_{16}-\mathrm{C}_{18}$ chain and decreases with the homologue in C_{20} Ia. Table VI presents all the homologues substituted in position 1 published to date ${ }^{13,14,16,27-30}$ and for which the relative activity has been calculated as stated above, except for homologues $9 \mathbf{a}$ and $\mathbf{9 b}$, for which the authors ${ }^{30}$ have not mentioned the EC_{50}; in contrast they have provided

[^4]estimated relative values on human platelets shown in Table VI.
By comparison of the relative activities, it can be observed that (i) no matter what their nature is, ether oxide chain homologues, i.e., alkylphenoxy ($\mathbf{2 a}$ and $\mathbf{2 b}$), alkenoxy ($\mathbf{3 a}, \mathbf{3 b}$, and $3 \mathbf{c}$), or polyalkoxy ($8 \mathbf{a}$ and $8 \mathbf{b}$) have an activity approximately equal to or greater than the corresponding n-alkoxy homologue (Ia-Ig) at the same hydrophobicity value of the chain, (ii) the elimination of oxygen (ether oxide function) and its replacement by a sulfur (thioether, $5 \mathbf{a}$), by a $\mathrm{CH}_{2}(\mathbf{6 a}, \mathbf{6 b}$, and $\mathbf{6 c}$), or by an ester function ($4 \mathbf{a}$ and 4b) dramatically decreases the platelet-aggregating activity, (iii) passage from a glycerol skeleton to a bu-tane-1,2,4-triol skelton (7a) significantly decreases the activity, (iv) the steric-hindrance effect around the ether function can also decrease or cancel the biological activity (2c). Wissner et al. ${ }^{28}$ have demonstrated that the steric hindrance on the glycerol skeleton itself canceled all activity.
Compounds 9a and 9b have a hydrophobicity that should bring their activity to the level of homologues with an n-alkoxy chain in $\mathrm{C}_{14}-\mathrm{C}_{12}$ such as compound Id, for example. Despite comparison difficulties with all the other results (for discussion see above), it is possible to suppose

Scheme I

${ }^{a}$ For R , see Figure 1.
that modifications of an electronic nature have occurred and that there are configurational constraints that are perhaps more effective on human platelets.

A QSAR study is being performed and should allow analyzing these various factors better.

In conclusion, discussion remains open on the mode of PAF-acether action. ${ }^{31}$ Its action may be not only direct on one (or more) proteinic receptor(s) but also indirect: for instance, it may modify local membrane fluidity. This is reminiscent of diacylglycerols which also stimulate protein kinase C activity ${ }^{32}$ The data presented here indicate a strong contribution of 1 -ether oxide chain hydrophobicity to the activities of PAF-acether as well as the need for the $1-0$-alkyl ether function for maximal agonist

[^5]activities. Such a hypothesis must take account of possible steric and configurational constraints around this function.

Experimental Section

Materials and Methods. A. Chemistry. Solvents were all reagent grade. The purity of each product was checked by TLC on silica gel plates (Kieselgel $60 \mathrm{~F}_{254}$, thickness 0.2 mm). Column chromatography was performed on silica gel (Merck, particle size $0.063-0.200 \mathrm{~mm}$ for normal chromatography, middle particle size $15 \mu \mathrm{~m}$ for flash chromatography), without any special treatment. HPLC was conducted on a Waters $201 \mathrm{U} / 6000$ high-pressure liquid chromatograph equipped with a differential refractometer. Melting points were determined on a hot-stage microscope (Reichert Thermovar). The structure of all compounds was confirmed by IR (Pye-Unicam SP3-200 instrument) and ${ }^{1} \mathrm{H}$ NMR (Varian EM 360 or Brucker $250-\mathrm{MHz}$ instrument) in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. ${ }^{33}$ Chemical-ionization mass spectra were obtained at $220^{\circ} \mathrm{C}$ on a modified AEI spectrometer. ${ }^{34}$ Elemental analyses were consistent with the proposed structures (C, H, N, P).

In the synthesis, only modifications of the original methods ${ }^{17-19}$ are described here. Physicochemical properties and spectral data are reviewed in Tables I-III.

1-O-Alkyl-2-O-tritylglycerol 2. Tritylation of 1-O-alkylglycerol 1 (25 mmol) was performed by $\mathrm{Ph}_{3} \mathrm{CCl}(30 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(60 \mathrm{mmol})$ in boiling toluene (75 mL) for 3 h . After the usual treatment, ${ }^{18}$ the remaining oil was dissolved in petroleum ether, allowing insoluble triphenylmethanol to crystallize. After filtration, flash chromatography using $5-15 \%$ ether in petroleum ether yielded pure 2 (80%).

Method A. 1-O-Alkyl-2-benzylglycerol 4. Compound 2 was reacted with NaH and benzyl chloride in DMF to give 3. ${ }^{18}$ Compound 4 was obtained by detritylation of $3(8 \mathrm{mmol})$ with boiling mixture of $\mathrm{B}(\mathrm{OH})_{3}(80 \mathrm{mmol})$ and $(\mathrm{EtO})_{3} \mathrm{~B}(10 \mathrm{~mL})$ and purified by flash chromatography using petroleum ether/ether ($80: 20, \mathrm{v} / \mathrm{v}$) as eluent (yield 75%).

1-O-Alkyl-2-O-benzylglycero-3-phospho-2'-bromoethanol 5. To a solution of $4(7.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{mmol})$ in 15 mL of dry diethyl ether was added dropwise 13 mmol of (2-bromoethyl)phosphoryl dichloride in 10 mL of dry ether. The mixture was stirred at room temperature for $5 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{~mL})$ and 1 mL of $\mathrm{H}_{2} \mathrm{O}$ were added, and the mixture was refluxed for 2 h with stirring and then evaporated. The residue was extracted with ether and washed with water. After elimination of the solvent, the crude product was purified by normal column chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($95: 5,90: 10$, then $85: 15$, v/v) as eluent (yield 70%).

1-O-Alkyl-2-O-benzylglycero-3-phosphocholine 6. An excess of $\mathrm{Me}_{3} \mathrm{~N}$ gas was dissolved in an ice-bath-cooled solution of $5(0.44 \mathrm{mmol})$ in a mixture of $\mathrm{CHCl}_{3} / 2$-propanol/DMF (40 mL) (3:5:5, v/v/v). The solution was stirred and heated $\left(50^{\circ} \mathrm{C}\right)$ by using an oil bath until 5 disappeared, as indicated by TLC (12 h). After cooling, $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol})$ was added and the mixture refluxed for 1 h . The cooled grey solution was filtered through paper and the paper washed with CHCl_{3} and MeOH . After evaporation, the crude product was purified by normal column chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(70: 30$ to $30: 70, \mathrm{v} / \mathrm{v}$) as eluent.

1-O-Alkylglycero-3-phosphocholine 7. Compound 7 was prepared by hydrogenolysis of the benzyl group of 6. A mixture of $6(4.6 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%)$ in absolute $\mathrm{EtOH}(40 \mathrm{~mL})$ was hydrogenated with stirring at $40^{\circ} \mathrm{C}$ for 12 h (20 psi). After filtration on paper, the catalyst was washed several times with CHCl_{3} and MeOH . Evaporation of the solvents gave the "lyso" lipid 7 (99%).

1-O-Alkyl-2-O-acetylglycero-3-phosphocholine I. Compound 7 (0.36 mmol) was acetylated by using freshly distilled $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(0.12 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$. The mixture was refluxed for 24 h with stirring. After cooling, the solvent and excess $\mathrm{Et}_{3} \mathrm{~N}$ and $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ were eliminated. The
(33) Laboratoire de Chimie Organique Structurale, Universitē P. et M. Curie, 75230 Paris Cedex 05, France.
(34) Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France.
residue was dissolved in CHCl_{3}, filtered on Millipore apparatus, and purified by HPLC, using a μ-Porasil column (diameter 7.8 mm , length 30 cm) and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(60: 50: 5, \mathrm{v} / \mathrm{v} / \mathrm{v})$ as eluent (for retention times, see Table III).

Method B. 1-O-Alkyl-2-O-acetylglycerol 9. A mixture of $8(15.2 \mathrm{mmol})$, obtained by acetylation of $2, \mathrm{CaCO}_{3}(2 \mathrm{~g})$, and Pd / C (10%) in 60 mL of CHCl_{3} was hydrogenated with stirring at 40 ${ }^{\circ} \mathrm{C}$ for 18 h (20 psi). After filtration and evaporation, the residue including 9 and triphenylmethane was used without purification in the next step to avoid acetyl migration.

1- O-Alkyl-2- \boldsymbol{O}-acetylglycero-3-phosphocholine I. Compound 9 was converted into the corresponding I via reaction of $\mathrm{Me}_{3} \mathrm{~N}$ with the alkylacetylglycerophosphobromoethanol 10 in the same way as described for 6 in method A.
B. Biological Methods. For all experiments, PAF-acether or analogues were dissolved in ethanol at $10 \mathrm{mg} / \mathrm{mL}$ and diluted in saline. Activities $\left(\mathrm{EC}_{50}, \mathrm{EC}_{30}\right)$ were calculated from the dose-response curve by a polynomial adjustment method followed by a linear least squares regression analysis (GLM procedure from SAS (Statistical Analysis System)).

Platelet Aggregation in Washed Rabbit Platelets (WP). The platelet-aggregating activity of PAF-acether and its analogues was performed on washed rabbit platelets as described previously. ${ }^{35}$ Aggregation was measured by using a concentration of 1.5×10^{8} platelets treated by 0.1 mM lysine (acetyl salicylate) from Egic-Joullie (Aspegic) and stirred in $300 \mu \mathrm{~L}$ of Tyrode's gelatin ${ }^{36}$ in the presence of the complex CP/CPK ($1 \mathrm{mM}, 10$ units $/ \mathrm{mL}$). Activity was expressed as the final concentration of each compound required for 50% of the maximum aggregation induced by a standard solution of synthetic PAF-acether (concentration: $2 \times 10^{-10} \mathrm{M}$). Results shown in Table IV are the mean of three independent experiments.

Platelet Aggregation in Platelet-Rich Plasma (PRP). Platelet-aggregation studies were performed by the method of Born and Croos. ${ }^{37}$ Blood was collected in 3.2% sodium citrate (1 mL for 9 mL of blood) by cardiac puncture from conscious male New Zealand rabbits ($\simeq 3 \mathrm{~kg}$). Platelet-rich plasma was obtained by centrifuging blood at 300 g for 10 min at room temperature. The platelet concentration was adjusted to $300000 \mu \mathrm{~L}^{-1}$ with platelet-poor plasma. Platelet aggregation was monitored by continuous recording of light transmission in a dual-channel recorder. Various concentrations of PAF-acether or its analogues $(40 \mu \mathrm{~L})$ were added to 0.4 mL of incubated and stirred PRP.

Aggregation induced by analogues was compared to that obtained with PAF-acether with produced 100% aggregation at 5 to $8 \times 10^{-8} \mathrm{M}$. The concentrations of drugs required to produce 50% aggregation $\left(\mathrm{EC}_{50}\right)$ were calculated.

Rat Hypotension. Male albino rats (Sprague-Dawley) weighing $280-300 \mathrm{~g}$ were anesthetized with sodium pentobarbital $(50 \mathrm{mg} / \mathrm{kg})$ by intraperitoneal injection. PAF-acether and its analogues were injected via a cannulated jugular vein, and arterial pressure was registered from a cannulated artery by means of a Statham P 23 ID pressive transducer. Drugs were injected at three cumulative doses at $20-\mathrm{min}$ intervals, to obtain a lowering or arterial diastolic blood pressure (BP) to 40% of initial value.
(35) Lalau-Keraly, C.; Coeffier, E.; Tencē, M.; Borrel, M. C.; Benveniste, J. Br. J. Haematol. 1982, 51, 313.
(36) Coeffier, E.; Ninio, E.; Le Couedic, J. P.; Chignard, M. Br. J. Haematol. 1986, 62, 641.
(37) Born, G. V. R.; Croos, M. J. J. Physiol. (London) 1963, 168, 178.

Hypotensive activity was maximal 1 min after administration of compounds, and the doses required to lower BP by $30 \%\left(\mathrm{EC}_{30}\right)$ were calculated.

Bronchoconstriction in the Guinea Pig. Male Hartley guinea pigs $(450-500 \mathrm{~g})$ were anesthetized with ethyl carbamate $(1.25 \mathrm{~g} / \mathrm{kg}$ ip). The jugular vein was then cannulated for administration of agonists, the carotid artery for blood sampling, and the trachea for artificial ventilation. Respiration was arrested with pancuronium bromide ($2 \mathrm{mg} / \mathrm{kg}$), and the animal was respirated by means of a Harvard pump (50 stokes $/ \mathrm{min}, 10 \mathrm{~mL} / \mathrm{kg}$). Resistance to lung inflation was measured by a modification of the Konzett-Rossler overflow technique. ${ }^{38}$ The resistance to lung inflation (in $\mathrm{cm}_{2} \mathrm{O}$) was measured 1 min after drug administration. The dose that induced a bronchoconstriction of $3 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ was calculated (five animals/dose). This effect was obtained with 0.18 nM PAF-acether. Each animal received only one dose of test compound since guinea pigs show tachyphylaxis to PAF-acether. One minute before and after injection, a blood sample was taken for platelet counting. The doses inducing 50% thrombocytopenia were calculated (EC_{50}).
C. Lipophilicity. Lipophilicity values of the glycerol position 1 moieties were calculated according to the hydrophobic fragmental constant system. For compounds Ia-Ih: $\Sigma f=f$ (aliphatic $\mathrm{O})+n f\left(\mathrm{CH}_{2}\right)+f\left(\mathrm{CH}_{3}\right)$, where n is the number of methylene groups in the chain. For $2 \mathbf{a}-2 \mathbf{c}, 9 \mathbf{a}$, and $\mathbf{9 b}: \Sigma f=f\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)+$ $f($ aromatic 0$)+f($ alkyl chain). For 3a-3c: $\Sigma f=f$ (aliphatic 0) $+n f\left(\mathrm{CH}_{2}\right)+f\left(\mathrm{CH}_{3}\right)+n^{\prime} f(\mathrm{CH}=\mathrm{CH})$, where n and n^{\prime} are the frequency of each kind of fragment. For $4 \mathbf{a}$ and $4 \mathbf{b}: \Sigma f=f(a)-$ iphatic $\mathbf{O}-\mathrm{CO})+f($ alkyl chain $)$. For 5a: $\Sigma f=f($ aliphatic $\mathbf{S})+$ f (alkyl chain). For $6 \mathbf{a}-6 \mathbf{c}$ and $8 \mathbf{a}$ the calculations were the same as described above. For compounds 9 a and 9 b a correction of proximity was performed. Computer-assisted multiple regression analyses were performed, which yielded the regression equations together with statistical parameters, adjusted for the degrees of freedom. Regression coefficients are given in equations with their standard errors.
Acknowledgment. We are grateful to Dr. O. Convert ${ }^{33}$ for performing ${ }^{1} \mathrm{H}$ NMR $250-\mathrm{MHz}$ spectra and to Dr. P. Varenne ${ }^{34}$ for mass spectra. Special thanks are also due to M. Bouteiller for typing the manuscript.

Registry No. 1a, 106759-46-0; 1b, 10438-95-6; 1c, 6145-69-3; 1d, 100165-14-8; 1e, 92219-12-0; 1f, 106972-45-6; 1g, 98451-40-2; 1h, 36887-04-4; 2a, 106689-11-6; 2b, 86334-56-7; 2c, 82002-20-8; 2d, 86483-56-9; 2e, 106881-89-4; 2f, 106881-90-7; 2g, 106881-91-8; 2h, 106972-46-7; 3b, 106972-47-8; 3c, 82002-21-9; 3d, 106881-92-9; 3f, 106881-93-0; 3g, 106881-94-1; 3h, 106881-95-2; 4b, 89104-47-2; 4c, 18678-94-9; 4d, 106972-48-9; 4f, 92948-22-6; 4g, 106881-96-3; 4h, 106972-49-0; 5b, 106972-50-3; 5c, 106972-51-4; 5d, 106881-97-4; 5f, 106881-98-5; 5g, 106881-99-6; $\mathbf{5 h}$, 106905-65-1; 6b, 43043-61-4; 6c, 18678-98-3; 6d, 70641-54-2; 6f, 106882-00-2; 6g, 106882-01-3; 6h, 106882-02-4; 7b, 72490-82-5; 7c, 17364-21-5; 7d, 70641-52-0; 7f, 106882-03-5; 7g, 106882-04-6; 7h, 106882-05-7; 8a, 106882-06-8; 8b, 89496-74-2; 8c, 106882-07-9; 10a, 106882-08-0; 10b, 106972-52-5; 10c, 106882-09-1; Ia, 106972-53-6; Ib, 85026-88-6; Ic, 77286-68-1; Id, 91423-78-8; Ie, 106882-10-4; If, 106882-11-5; Ig, 106882-12-6; Ih, 106882-13-7; $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CCl}, 76-83-5 ; \mathrm{Cl}_{2} \mathrm{P}(=\mathrm{O}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}$, 4167-02-6.
(38) Konzett, H.; Rossler, R. Arch. Exp. Pathol. Pharmakol. 1940, 195, 71.

[^0]: ${ }^{\dagger}$ Universitē Paris 7.
 ${ }^{\ddagger}$ Roussel-Uclaf.
 ${ }^{8}$ Institut Pasteur.

[^1]: (16) Surles, J. R.; Wykle, R. L.; O'Flaherty, J. T.; Salzer, W. L.; Thomas, M. J.; Snyder, F.; Piantadosi, C. J. Med. Chem. 1985, 28, 73.
 (17) Godfroid, J. J.; Heymans, F.; Michel, E.; Redeuilh, C.; Steiner, E.; Benveniste, J. FEBS Lett. 1980, 116, 161.
 (18) Heymans, F.; Michel, E.; Borrel, M. C.; Wichrowski, B.; Godfroid, J. J.; Convert, O.; Coeffier, E.; Tencé, M.; Benveniste, J. Biochim. Biophys. Acta 1981, 666, 230.
 (19) Borrel, M. C.; Broquet, C.; Heymans, F.; Michel, E.; Redeuilh C.; Wichrowski, B.; Godfroid, J. J. Agents Actions 1982, 12, 709.
 (20) Baumann, W. J.; Mangold, H. K. J. Org. Chem. 1964, 29, 3055.
 (21) Baer, E.; Fischer, H. O. L. J. Biol. Chem. 1939, 128, 463.

[^2]: (22) Pluncktun, A.; Dennis, E. H. Biochemistry 1982, 21, 1743.
 (23) Piantadosi, C.; Hirsch, A. F.; Yarbro, C. L.; Anderson, C. E. J. Org. Chem. 1963, 28, 2425.
 (24) Varenne, P.; Das, B. C.; Polonsky, J.; Tencè, M. Biomed. Mass Spectrom. 1985, 12, 5 .
 (25) Rekker, R. F.; De Kort, H. M. Eur. J. Med. Chem.-Chim. Ther. 1979, 14, 479.

[^3]: ${ }^{a}$ For compounds Ia-Ig, see Table IV; all are racemic mixtures except compounds 4 a and 4 b (R configuration). ${ }^{b}$ See Experimental Section.

[^4]: (27) Nakamura, N.; Miyazaki, H.; Ohkawa, N.; Koike, H.; Sada, T.; Asai, F.; Kobayashi, S. Chem. Pharm. Bull. 1984, 32, 2452.
 (28) Wissner, A.; Schaub, R. E.; Sum, P. E.; Kohler, C. A.; Goldstein, B. M. J. Med. Chem. 1985, 28, 1181.
 (29) Wissner, A.; Kohler, C. A.; Goldstein, B. M. J. Med. Chem. 1986, 29, 1315.
 (30) Anderson, R. C.; Reitter, B. E.; Winslow, C. M. Chem. Phys. Lipids 1986, 39, 73.

[^5]: (31) Godfroid, J. J.; Braquet, P. Trends Pharmacol. Sci. 1986, 7, 368.
 (32) Brasseur, R.; Cabiaux, V.; Huart, P.; Castagna, M.; Baztar, S.; Ruysschaert, J. M. Biochem. Biophys. Res. Commun. 1985, 127, 969.

